Applications of FTIR Spectroscopy to Advanced Packaging

John JH Reche
945 E. Verde Lane, Tempe, AZ 85284
jjcreche@wafer-bumping.com

11th Symposium on Polymers for Microelectronics
May 6, 2004 Wintherthur Museum and Gardens, DE
Outline

- Brief review of FTIR (Fourier Transform Infrared) spectroscopy
 - How does it work?
 - Data acquisition techniques
 - What information do we get?
 - Interpretation of the data

- Applications to semiconductor
 - Polymer processing
 - Identification of polymers
 - Plasma processing
 - Sputtering
 - Failure analysis
 - Quality control
 - Incoming inspection
Harmonic oscillator model

- IR radiation interacts with molecules
- Bonds between atoms vibrate when absorbing specific wavelength
 - Bonds absorb energy at some characteristic frequency of their functional groups
 - To absorb IR energy, the vibration of a bond must induce a net change in dipole moment as a result of vibrational or rotational motion
 - Simple harmonic oscillator model
 - Vibrations can be subdivided into two classes, depending on whether the bond length or angle is changing
 - Stretching (symmetric and asymmetric)
 - Bending (scissoring, rocking, wagging and twisting)
Examples of IR induced vibrational modes

- Energies associated with the vibrational found between 4000 cm\(^{-1}\) and 650 cm\(^{-1}\)
- Rotational energies are generally much smaller (below 300 cm\(^{-1}\))
Preferred FTIR equipment for packaging

- Covers IR spectra from 4500 cm\(^{-1}\) to 650 cm\(^{-1}\)
- ATR (Attenuated Total Reflectance)
 - Sample spatial resolution < 150 µm
- Micro ATR microscope Objective
 - Sample spatial resolution ~ 25 µm
- Reflectance microscope objective
 - Diffraction limited by microscope objective
- FTIR mapping
 - Can spatially map absorbance over a sample
 - Invaluable to map contamination boundaries of materials
Attenuated Total Reflectance (ATR) set-up

- Most versatile instrumentation for fab
- Micro diamond ATR objective to handle micro-areas
 - The red area indicates the IR beam path
 - Penetration depth:

\[
d_p = \frac{\lambda_c}{2\pi \sin^2 \theta - (\eta_s/\eta_c)^2}^{1/2}
\]

where \(\lambda \) is the wavelength of light, \(\lambda_c = \lambda/n_c \) and \(n_s \) is the refractive index of the sample
\(n_c \) is the refractive index of the internal reflection element
\(\theta \) is the internal reflection element
\(\gamma \) is the half-angle acceptance of the microscope objective.
IR Microscope Reflectance Objective

- Modified Schwarzschild all reflective elements objective
- A refractive optical element is mounted in the center to allow inspection of a large field in the visible
Removing atmospheric background absorption

- Absorption from the atmosphere (H2O, CO2 etc.) must be removed from the raw spectrum data
Wavenumber vs Wavelength

- Why use wavenumbers? direct relationship to energy
 - The energy of light can be expressed as:
 \[E = \frac{hc}{\lambda} = hn \]
 - where \(h \) is Plank’s constant (6.63 \times 10^{-34} \text{ J} \cdot \text{s})
 - \(c \) is the speed of light in vacuum (3.0 \times 10^8 \text{ m/s})
 - \(\lambda \) is the wavelength of the light.

- In practice the IR radiant energy units are wavenumbers \(n \)

- Wavenumbers are the reciprocal of the wavelength, \(\lambda \)
 - i.e. the number of waves per unit length

- The SI unit is \(\text{m}^{-1} \), but a commonly used unit is \(\text{cm}^{-1} \).
 - Reference:

- Conversion between wavelength and wavenumber
 \[\nu = \frac{1}{\lambda} \times 10^4 \]
 - \(\nu \) in \(\text{cm}^{-1} \), \(\lambda \) in \(\mu\text{m} \)

May 6, 2004
JJH Reche, 11th Symposium on
Polymers for Microelectronics
Lambert-Beer’s law

- FTIR spectra can provide quantitative information
- Lambert-Beer’s law correlates physical properties and chemical composition:
 - The concentration of a sample can be estimated by:
 - \[A = -\log T \varepsilon c d \]
 - Where:
 - \(T \) is the intensity of the light transmitted through the sample
 - \(\varepsilon \) is the molar absorption coefficient
 - \(c \) is the sample concentration
 - \(d \) is the sample thickness
Practical FTIR applications in packaging

- Polymer processing
 - Curing
 - Photolitho, metallization etc.

- Plasma etching
 - Descuming, patterning

- Identification of materials:
 - Polymer dielectrics
 - Inorganic thin films
 - Contamination
 - Unknown compounds

- Analysis of formulations
An example of polyimide spectrum
Peaks deconvolution

- Uncovering hidden peaks
- Unmasking peak height
Drying and Curing polymers

- Drying of photo-sensitive materials is critical
 - Impacts photo response

- Optimizing curing:
 - Determine optimum intermediate curing in multi-layer applications
 - Curing level kept low for layer to promote inter-layer bonding
 - Curing level high enough to withstand sputtering thermal load
 - Trade-off curing time vs temperature
 - Checking on consistency of curing level
 - Determining curing level and completion
 - Checking on the effects of novel curing methods
 - Microwave
 - e-beam

- Optimizing curing profile
 - Ramping speed, dwell time
 - Monitoring effects of background curing atmosphere
Evaluation of B-staging a polymer

- Photo polymers are very sensitive to drying conditions.
Distinguishing dried and cured wafers

- Stray wafer lot orphaned after exposure and development
 - No partial curing

![Absorbance vs. Wavenumbers graph](image)
Drying photoresist

- Optimization of positive photoresist drying
Drying polyimide

- Identification of material condensing on walls of a poorly ventilated drying oven

![Spectrogram of solvent condensation on walls of a drying oven.](image)
Monitoring product after curing

- Curing atmosphere:
 - Evaluation of thermo-oxidative and thermal stability
 - Stability check of cured polymers to environment
 - Post curing oxidation in air
 - Troubleshooting curing oven problems
- Moisture absorption
- Evaluation of oxygen or moisture barrier capabilities
- Detection of molecular impurities or additives present in amounts of 1% and in some cases as low as 0.01%
Final cure temperature

- Optimizing and monitoring final curing

![Graph showing final cure temperatures and absorption peaks at 320 °C, 350 °C, and 380 °C.]
Monitoring effects of curing level

- A common bumping job-shop issue:
 - wafers from different sources may react differently
Plasma etching

- Detection of etching endpoint
 - contact via holes
 - polymer
 - oxide

- Detection of etching problems
 - Residual Fluorine on polymer surface
 - Polymer or metal oxidation
 - Polymer degradation: Identification of bonds damaged by plasma chemistry

- Cleaning of via holes
 - Very thin films are not detectable in an optical microscope
 - Over-etching and under-etching control
 - Detection and identification of residues (e.g. ash)
Plasma etching

- Effect of introducing H₂ in etching gas
Plasma etching process development

- Spectra before and after plasma etching

![Spectra comparison graph](image)
Monitoring effects of processing steps

- **Sputtering**
 - Many systems have poor thermal control (no wafer cooling)
 - Monitor effects of thermal load on polymer
 - Cassette to cassette consistency
 - Variation of thermal load imposed within cassette

- **Etching (Wet and Plasma)**
 - Identification of damage caused by etching chemistry
 - Optimize plasma etching gas

- **Photoresist removal**
 - Wet
 - Damage to underlying polymer
 - Check in conjunction with curing level
 - Plasma
 - Optimizing gas mixture and timing
 - Check on descuming

- **Cleaning materials**
 - Damage caused by strong solvents used to remove solder flux
Identification of contamination

■ Flux residues:
 – Present on solder balls
 – Contamination of the passivation layer

■ Chemical contamination of parts in processing
 – e.g. Permeation or absorption of chemicals in a polymer

■ Contamination of parts induced by handling, processing, shipping etc.

■ Aging of vacuum roughing lubricants
 – Deterioration of plasma pump oil
 • Acidification, oxidation or fluorination

■ Vacuum chamber contamination
Identifying contamination

- Degassing from improperly dried photoresist contaminating a stepper optical system
Identification of Materials and Chemicals

- Identification of compounds
 - Matching spectrum of unknown compound with reference spectrum (fingerprinting)
- Identification of functional groups in unknown substances
- Identification of reaction components and kinetic studies of reactions
- Identification of molecular orientation in polymer films
 - Need polarized IR set-up
- Identification of polymers, plastics, and resins
- Analysis of formulations
 - Wet etchants
 - Cleaning solutions
 - Solvents
Monitoring SOG (Spin-on glass)

- Same SOG material on different wafers
Plasma treatment of Si_3N_4

- Oxidation of the surface after O2 plasma
Monitoring of oxidation of an Aluminum film

From L. Brandner “Ozone Oxidation of Ti and Al on a Flexible Substrate for Thin Film Transistors “ U. Illinois, July 31, 2003
FTIR limitations

- Molecule must be active in the IR region. (When exposed to IR radiation, a minimum of one vibrational motion must alter the net dipole moment of the molecule in order for absorption to be observed.)
- Minimal elemental information is given for most samples.
- Material under test must have some transparency in the spectral region of interest.
- Accuracy greater than 1% obtainable when analysis is done under favorable conditions
- Expect accuracy of ± 5% for routine analyses
Conclusion

- FTIR is a simple and sensitive analytical tool
 - Provide fast data acquisition tool
 - Simple to operate
 - Most useful analytical tool
 - to determine the composition of organic materials
 - to identify IR transparent or semi-transparent inorganic films
 - provides quantitative determination of compounds in mixtures

- Con:
 - Interpretation of the data requires some experience
 - No useful detailed database available for the semiconductor processes